Bài viết hướng dẫn chi tiết cách xem trực tuyến và cách tải PDF sách lớp 6 Kết nối tri thức đầy đủ các môn học Toán, Ngữ văn, Tiếng Anh, Khoa học tự nhiên, Lịch Sử, Địa Lí, Giáo dục công dân, Hoạt động trải nghiệm, Công nghệ, Tin học, Âm nhạc, Mĩ thuật, Giáo dục thể chất. Qua bài viết này các bạn dễ dàng xem được trọn bộ sách giáo khoa, sách bài tập, sách giáo viên lớp 6 Kết nối tri thức. Mời các bạn đón xem:
Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức
Với tóm tắt lý thuyết Toán 11 Bài 2: Công thức lượng giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 11 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 11.
Công thức lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức
cos (a – b) = cosa cosb + sina sinb
cos (a + b) = cosa cosb – sina sinb
sin (a – b) = sina cosb – cosa sinb
sin (a + b) = sina cosb + cosa sinb
tan (a-b) = tana−tanb1+tanatanb
tan (a+b) = tana+tanb1-tanatanb
(giả thiết các biểu thức đều có nghĩa).
Ví dụ: Không dùng máy tính, hãy tính sin và tan 15°.
= -sinπcosπ6 - cosπsinπ6 = -0.32 - (-1).12 = 12.
tan15o = tan(60o - 45o) = tan60°−tan45°1+tan60°.tan45°
cos2a = cos2a – sin2a = 2cos2 – 1 = 1 – 2sin2a
Chú ý: Từ công thức nhân đôi suy ra công thức hạ bậc:
Ví dụ: Biết sinα = 25 và 0 < α < π2 . Tính sin2α ; cos2α và tan2α.
sin2α + cos2α = 1 ⇒ cos2α = 1 – sin2α = 1-= 2125
Ta có: sin2α = 2sinα cosα = 2.25.215=42125
cos2α = 1 – 2sin2α = 1 - 2.= 1725
3. Công thức biến đổi tích thành tổng
cosacosb = 12[cos(a-b) + cos(a+b)]
sinasinb = 12[cos(a-b) - cos(a+b)]
sinacosb = 12[sin(a-b) + sin(a+b)].
Ví dụ: Tính giá trị của biểu thức
4. Công thức biến đổi tổng thành tích
Ví dụ: ChoA = cosπ17.cos4π17 và B = cos3π17 + cos5π17. Không dùng máy tính, tính giá trị của biểu thức AB.
B = cos3π17 + cos5π17 = 2.cos3π17+5π172.cos3π17−5π172
= 2.cos4π17.cos = 2cos4π17.cosπ17.
Suy ra AB=cosπ17.cos4π17cos3π17+cos5π17=cosπ17.cos4π172cos4π17.cosπ17=12 .